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maxima. This result is not surprising because low l 
terms contribute a substantial portion of the whole 
Patterson function (after omitting the / = 0  term) 
under the conditions of the test. However, as dis- 
cussed in the article, these very low-/terms can hinder 
the true solution from showing up. This is clearly 
shown in Fig. 8, where the terms I = 2, 4 were omitted 
from the calculations. It is worth noticing that the 
two omitted terms contributed 86% of the Patterson 
squared norm. 
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Abstract 

The probability that the Bijvoet ratio X for the 
observed reflections of a given crystal is greater than 
any particular value Xo depends on space-group sym- 
metry, the number of anomalous scatterers per asym- 
metric unit and the parameters k and tr 2. Numerical 
values for this probability are obtained as a function 

2 for the triclinic, of Xo for different values of k and o-1 
monoclinic and orthorhombic crystals containing p 
(= 1, 2, 3 or 4) anomalous scatterers per asymmetric 
unit. These results are provided in the form of com- 
pact tables; Fortran programs that are useful in com- 
puting this probability for any given situation are also 
provided. 

1. Introduction 

The success of the anomalous-scattering method of 
structure determination strongly depends on the 
measurability of Bijvoet differences. The measurabil- 
ity is defined as the probability of the event {(X-> 
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0.1) n (Ymin ~ 0"3)} (Velmurugan & Parthasarathy, 
1984; VP, hereafter) where X is the Bijvoet ratio and 
Ymin is the minimum value of the normalized structure- 
factor magnitudes for the reflection H and the inverse 
reflection ICI. Owing to the importance of the 
anomalous-scattering method, particularly due to the 
advent of synchrotron radiation as a source for 
diffraction studies, it would be useful to know a priori, 
in the case of a given crystal, the percentage of 
observed reflections for which the Bijvoet ratio X 
would be greater than any specific value Xo, say. This 
information can be obtained from the probability 
value for the event {(X -> X0) c~ (Ymin -> 0"3)} (= D, 
say) and we shall denote this probability by 
M(Xo, 0.3). The values of M(Xo, 0.3) for the par- 
ticular case of X0 = 0.1 were obtained in VP for the 
triclinic, monoclinic and orthorhombic crystals con- 
taining one or two heavy atoms per asymmetric unit 
for values of k (i.e. the ratio of the imaginary to the 
total real part of the atomic scattering factor of the 
anomalous scatterer) up to 0.6. Under a pronounced 
anomalous-scattering effect, k can have larger values 
for some of the heavy atoms. For example, the values 
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of k for Pr and Sm calculated from the measured 
values of dispersion corrections for these atoms at 
wavelengths very close to their absorbtion edges 
(Templeton, Templeton & Phizackerley, 1980; 
Templeton, Templeton, Phizackerley & Hodgson, 
1982) are found to be 0.868 and 0.859 respectively. 
Hence it would be useful to obtain values of 
M(Xo, 0.3) for values of k up to 0.9. In proteins 
containing several thousand atoms per asymmetric 
unit it would be advantageous to use more than one 
heavy atom per asymmetric unit not only to increase 
the measurability but also to tackle the phase problem 
more effectively. Hence it would be useful to obtain 
the values of M(X0, 0.3) for the cases p - -3  and 4 
also. In this paper we shall therefore obtain the values 
of M(Xo, 0.3) in the form of convenient tables for 
different values of X0, for values of k up to 0-9 and 
for the cases in which p = 1, 2, 3 and 4. These tables 
are useful for computing, in the case of a given crystal, 
the percentage of reflections for which the Bijvoet 
ratio would be greater than any specified value Xo. 

integrals for the space-group categories 1, 3, 5 and 6 
respectively. The theoretical expressions for X and 
Ymin in terms of the random variables involved in (1) 
are given by [see equation (27) of VP] 

2 2 X = CfEpy 0 sin (27r~0)/[ C2E2p + 0"2YQ 

+ C3Evy O cos (2ZrOo)] (2) 

Ymin = {min [a + b(cos 21r~bo+ k sin 2"n'qJo), 

a + b(cos 2zrOo- k sin 27r~o)]} 1/2 (3) 

where a and b are defined to be 

a = C4E2/(ep)+ C5y2o, b= C6Epyo/(ep) 1/2. 
2 The quantities Ci, i = 1 to 6, depend on k, 0"1 and p 

and these are defined in equations (29) and (35) of 
VP. Ep is defined to be [see equation (22) of VP] 

j = l  

12/1/2 
+ ~ r;pj(0~,4,j, 0~)J J • (4) 

j = l  

2. Theoretical considerations 

In this paper we shall follow the notation of VP. In 
particular, we shall use 0"2 to denote the fractional 
contribution to local mean intensity from the group 
of anomalous scatterers relative to the whole struc- 
ture. We shall present the results corresponding to 
the non-centrosymmetric space-group categories 1, 3, 
5 and 6 belonging to the triclinic, monoclinic and 
orthorhombic systems [see p. 59 of Lipson & Cohran 
(1966) for details of the space-group categories]. 
Since the theoretical expressions needed for the 
evaluation of M(X, 0.3) are available in VP, we shall 
give only the final expression needed for computing 
the numerical tables in this paper. 

The theoretical expression for M(Xo, 0.3) in the 
case of a non-centrosymmetric crystal containing n 
atoms in the asymmetric unit of which p atoms are 
anomalous scatterers (of the same type) and the 
remaining q (= n - p )  are normal scatterers of similar 
scattering power is known to be [see equation (42) 
of VP] 

M(Xo, O'3)= Pr(D)= J" "D" J 2yO exp (-y20) dr (1) 

where dz is a volume element in the (3p+ 
2)-dimensional Cartesian (Yo, 4,0, 0~, 4'~, 0 ' , , . . . ,  0p, 
6~,, tp~,) space. Equation (1) is valid for the space- 
group categories 5 and 6. For crystals of space-group 
category 3, d r  is the volume element in the (2p+ 

l 2)-dimensional (Ye, ~o, 0'i, qS~,..., Op, d~'p) space. For 
crystals of space-group category 1, dr  is the 
volume element in the (p + 2)-dimensional 
(yo, Oo, O~,...,O'p) space. Thus (1) involves ( p +  
2)-fold, (2p + 2)-fold, (3p + 2)-fold and (3p + 2)-fold 

3. Discussion 

The multiple integrals in (1) for the various space- 
group categories are to be computed by the Monte 
Carlo method for different values of Xo, p, k and o-2. 
The results obtained for the space-group categories 
1, 3, 5 and 6 corresponding to p- -1 ,  2, 3 and 4 are 
given in Tables 1 to 16.* These tables contain the 
values of M(Xo, 0.3) corresponding to 0"2=0.02, 
0.05, 0.10, 0.15, 0.20, 0.30, 0.40 and 0-50 and k -- 0.05, 
0.10, 0.15, 0-20, 0.25, 0.30, 0-40, 0.60, 0.80 and 0.90. 
Tables 1-4 are for space-group category 1 and pertain 
to the cases p = 1, 2, 3 and 4 respectively. Tables 5-8 
are for space-group category 3 and pertain to the 
cases p = 1, 2, 3 and 4 respectively. Tables 9-12 are 
for space-group category 5 and pertain to the cases 
p = 1, 2, 3 and 4 respectively. Tables 13-16 are for 
space-group category 6 and pertain to the cases p = 1, 
2, 3 and 4 respectively. 

The variation of M(X0, 0.3) as a function of X0 is 
shown in Fig. 1 for the space-group category 5 corre- 
sponding to the following typical situation: p =  1, 
0"2=-0.10 and k=0.05 ,  0.10, 0.15, 0.20, 0.25, 0.30, 
0.40, 0"60, 0"80 and 0.90. The ordinate corresponding 
to X0 = 0 for any curve represents the probability of 
the event {(X _> 0) n (Ymin) -> 0"3)} and this event is 
equivalent to the event {Ymin -> 0"3} (=- Do, say) since 
all the reflections satisfy the trivial condition that 
X-> 0. Though the probability for the event Do is a 

* Tables 1 to 16 have been deposited with the British Library 
Document Supply Centre as Supplementary Publication No. SUP 
43890 (24 pp.). Copies may be obtained through The Executive 
Secretary, International Union of Crystallography, 5 Abbey 
Square, Chester CH1 2HU, England. 
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function of k and 02, it is found to be insensitive to 
2 changes in k and 0.~. For example, the values of 

Pr (Do) (corresponding to k = 0.05) are found to be 
2 0.907 and 0.902 when 0., = 0.05 and 0.30 respectively 

and the values of Pr (Do) (corresponding to 0.2 = 0.05) 
are found to be 0.907 and 0.852 for k = 0.05 and 0.90 
respectively. It is seen from Fig. 1 that the curves for 
M fall steeply to zero when k is small. For larger 
values of k, the curves fall relatively slowly. Thus, 
while it is hardly possible to find any reflection having 
a Bijvoet ratio greater than 0.25 when k = 0.05, more 
than 61% of reflections would have a Bijvoet ratio 
greater than 0.25 when k=0 .9 .  Curves for other 
values of k, 0.2 and p and for other space-group 
categories exhibit similar trends and hence are not 
shown. Since M varies differently in the different 
regions of 0.2 and k, values of M are given in Tables 
1-16 at convenient unequal intervals of Xo. 

In connection with the theoretical evaluation of 
M(Xo, 0.3) for any given Xo for a particular crystal, 
the following points may be noted. Since M is a 
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Fig. 1. Variation of  M(Xo, 0.3) as a function of  X0 for the space- 
group category 5 corresponding to the situation in which p = 1 
and o -2 = 0.10. The different curves correspond to the different 
values of  k indicated. 

function of k and 0 .2 and since these are, in turn, 
functions of (sin 0)/A, it follows that M will also be 
a function of (sin 0)/A. Hence it is necessary to obtain 
an average value of M ((M), say) for the crystal. (M) 
for a particular crystal can be obtained from the local 
values of M by giving weights proportional to the 
relative number of reflections in the various ranges 
of (sin 0)/k. It can easily be shown that 

Smax 
= S3ax)  (M) (3/ ~ Ms 2 ds, (5) 

0 

where s stands for (sin 0)/A and Sma x is the maximum 
value of (sin 0) /k  for the data. The value of (M) for 
any situation (i.e. for given crystal, radiation and 
data) is to be obtained by carrying out the integration 
in (5) numerically. The values of M needed for the 
numerical integration can be obtained from the 
appropriate table of values of M by interpolation. 

Reasonably good values of (M) can be obtained 
by employing the following simpler procedure: (i) 

2 for the data. (ii) Obtain the mean values of k and o"i 
Use these mean values to compute the value of (M) 
from the appropriate deposited table by a two- 
dimensional interpolation method (Abramowitz & 
Stegun, 1965). Fortran programs for calculating the 
value of (M(Xo,  0.3)) corresponding to any fixed X0 
for a given crystal by this method are also available 
as deposited material.* 

The authors are grateful to the Council of Scientific 
and Industrial Research for financial support. 

* See deposition footnote. 
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